Gut microbiome and human health

Integrating genomics, computational biology, and systems biology approaches to study the composition and dynamics of the human gut microbiome, as well as the interactions between microbes and hosts.

整合基因组学、计算生物学和系统生物学手段,研究肠道菌群的结构组成与变化规律,以及微生物与宿主的相互作用等问题。


Circular noncoding RNAs

Establish statistical models and algorithms for circular RNA recognition, quantification, transcript assembly, alternative splicing identification, and functional annotation, providing methodological tools for unraveling their biogenesis mechanisms and functions.

建立环形RNA识别、定量、转录本组装、可变剪接识别和功能注释等统计学模型和算法,为解析其形成机制和功能提供方法学工具。


Single-cell and spatial omics

Based on microfluidics and deep learning technologies, establish new methods for single cell and spatial transcriptomics / proteomics / metabolomics, uncovering the spatial heterogeneity of cells and functions, and gaining a deeper understanding of the impact of the gut microbiota and its metabolites on the host.

基于微流控及深度学习技术,建立空间转录/蛋白/代谢组学新方法,揭示细胞及功能的空间异质性,深入理解肠道菌群及其代谢产物对宿主的影响。